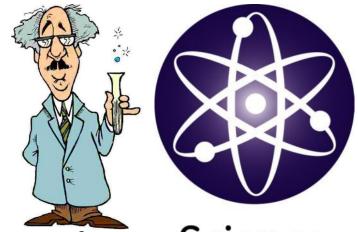
The A/C Tune-up:

How to Evaluate and Optimize Peak Performance

Jim Bergmann & Bill Spohn TruTech Tools

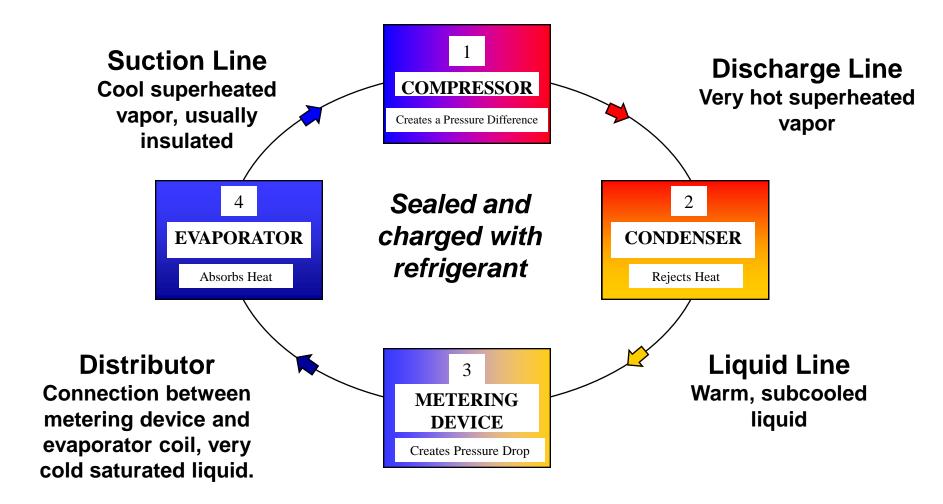
- Experienced professionals delivering CEU training to the HVAC and related trades
- 45+ years combined experience
- Practical, related and hands-on training
- Earn while you Learn
 - BPI Recognized CEUs


"Quality comes not from inspection but from improvement of the process." W. Edwards Deming

There are no theories in HVAC/R!

- Air conditioning founded on scientific facts
 - Repeatable
 - Universal
 - Well proven
 - Understandable
 - Provable
 - And you can do it!

Measurements are made to prove facts Science



The only two problems with air conditioning systems

- 1. It has to be installed.
 - That's where it starts to fall apart.
- 2. It has to be serviced.
 - That's where it gets even worse.

The Basic Refrigeration System

A/C SYSTEM

- Condenser
- Evaporator
- Refrigerant lines (split systems, not package unit)
- Air handler (furnace or indoor blower)
- Entire duct system from return to supply registers
- Building/loads

Air Conditioning

When was the last time you quantified how much you conditioned the air?

- Temperature drop won't tell you......
- Electrical measurements won't tell you.....
- Gauge pressures won't tell you......
- Superheat and sub-cooling won't tell you....

Yet that is what technicians measure to quantify performance!

What's all the fuss about?

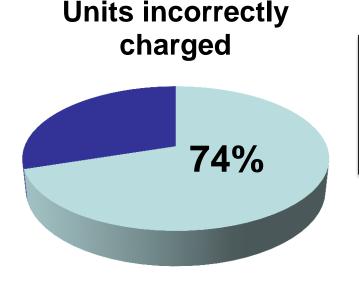
- Some estimates show that 55% of the capacity of the electrical grid is used for ACR.
- 10% is used for the 33,000 supermarkets alone
- Some estimates show that the efficiency of energy delivery is only 19%
 - from energy input to end use
- Therefore for every KW saved 4-5 times the power plant output is saved
 - Reduces the need for more power plants (\$, ROI)
 - Impacts the consumption of fuel (for non-nuclear plants)
 - Impacts the stack emissions

Energy Star on proper charge.

energy STAR

Refrigerant Charge

 Essertia to maintain capage overcharged accordance with manufacturer's instructions re th not qualif verchar


Energy Star on Air Flow

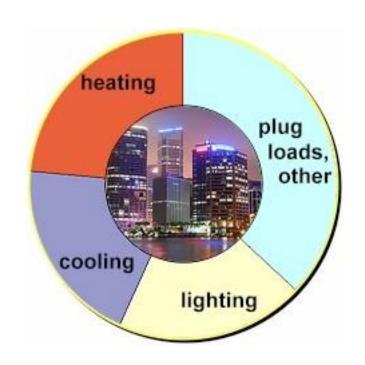
- 70% of water strested experience operangle is 400 cfm/ton)
- Annual cavings of 8% possible of OCC To Company of 8% possible of 9% poss
- cfm specified by manufacturer during full-speed testing
 - Systems incapable 55 fm to created by improving ducts or would not qualify

California PUC analysis of 13,000 residential and commercial units

- Most off by ½ to 5 pounds of refrigerant
- A/C units off by more than 8 ounces will potentially fail within 5 years
- In cap tube or short orifice systems even one or two ounces can have a serious impact on performance

74% of systems are improperly charged

Causes


- •Improperly calibrated measurement equipment
- •Human errors during commissioning

SOURCE: The California refrigerant and airflow verification program

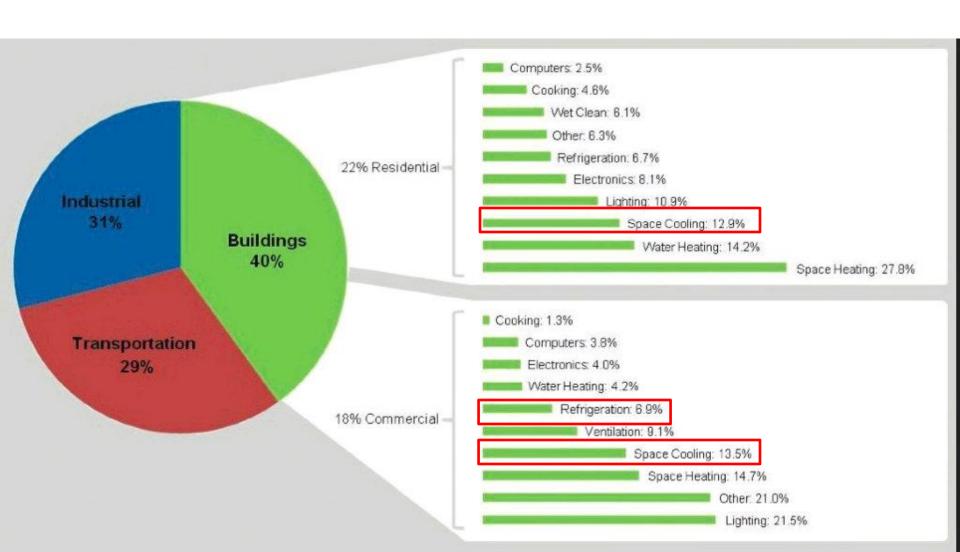
Advanced Energy of North Carolina Study On New Heating & Cooling Units

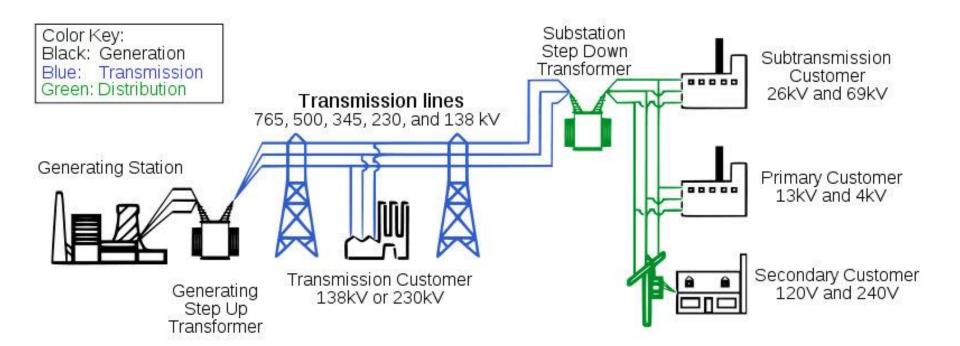
- 90% of all units tested exhibited some sort of energy waste problem
- 50% of all installations had an improper refrigerant charge
- 40% failed to meet the minimum requirements for air flow standards
- A 20% reduction in air flow will reduce SEER about 17% (12/9, 14/9, 18/14)
- A 15% return air leak from 120 degree attic will easily reduce a 12 SEER TO 6 SEER

APS

Arizona Public Service Company

- Improvements to duct leakage and insulation can save 16% on cooling cost
- Properly insulated ducts and efficient units can reduce cooling usage by 42%
- 64% of units tested had air flow less than 350 CFM per ton (Ideal CFM is 400)
- 82% were improperly charged (average improper charge reduces efficiency 31%)
- Installation technicians frequently do not evacuate a system properly with Micron Gauges (and proper technique, etc.)
- 53% of units tested were oversized causing wear and tear, and thus higher energy costs




WHY???

The FORTY PERCENTERS

Electrical generation efficiency ~ 30%

- ~ 3 times savings upstream
 - Fewer power plants (\$, ROI)
 - Lower fuel consumption (non-nuclear)
 - Lower stack emissions

Why are utilities interested in AC?

- Why are utilities interested in this?
 - Demand side reduction for peak load times
 - Increasing customer satisfaction
 - PUCs are forcing the hands of utilities
- Benefits to peak load reduction:
 - if all A/Cs are running due to weather
 - fewer are running simultaneously since individual A/C system operations & delivery are more efficient and matched to load
 - This helps to "shave the peaks"

What are the alternatives?

- What is the alternative to best practices?
 - More power plants.
 - NIMBY!

The Status Quo, Rights and Wrongs

- Historically measurements were not made due to expense and time
- Also, until the last 5 years, good measurements were hard to make, usually done in lab
- Bad measurements were made and did not yield results and measurements were abandoned
- A resurgence of good measurements, now in the field, is under way!

Insanity: Doing the same thing over and over, each time expecting a different result.

Why do we keep missing the mark???

- Our test instruments and techniques do not measure up
 - We can't get "factory accurate" results.
 - We cannot trust our tools
 Tech after tech should get the same measurements and results....

So, what can we do?

- 1. Visual inspection of duct inadequacies
- 2. Verify airflow: digital vane anemometer or other airflow measurement device
- 3. Verify static pressure is within range
- 4. Use digital refrigerant gauges for better accuracy
- Measure return and supply wet-bulb and drybulb, calculate delivered capacity, compare to rated capacity
- 6. Recommend corrective actions

THEN...

Using the information to diagnose problems and make wise choices

POP Quiz

What are the ONLY adjustable parameters or settings in a standard air conditioning system?

Answer!!!

- 1. Airflow
- 2. Refrigerant Charge

You cannot adjust

- Voltage
- Amperage
- Temperature drop
- Temperature rise
- Pressure drops across filters or coils
- Capacity
- Efficiency

These are all a function of the load

Unfortunately

50% of that equation gets ignored 99% of the time!

By doing so, the technician gives up 50% of his power to control the outcome of his visit

The \$1,000,000 Question is...

WHY???

Wake-up call

- Many of these have been regularly "maintained" by the industry!
- How can this happen?

What might be skipped?

- Measuring airflow?
- Cleaning dirty e-coils and blowers?
- Inspecting the duct system for breaks & leaks?
- Measuring static pressure?
- Verifying actual delivered capacity & efficiency?
- Measuring refrigerant charge with digital accuracy?
- Adjusting charge to correct Superheat or Subcooling?

Matched components:

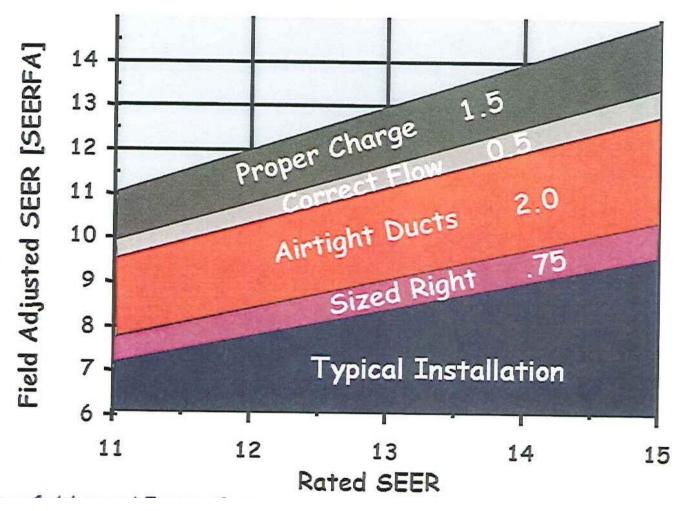
-Systems must be listed in the ARI directory

Increased importance of charging:

- Proper charge is imperative to get guaranteed energy efficiency, capacity, and system reliability.
 - –A few ounces of refrigerant changes everything!!!!!

Critical airflows:

- -Airflow directly effects efficiency, capacity, and creature comfort.
- —Proper airflow across the evaporator is critical to achieve efficiency ratings.


System Performance

- Performance cannot be assumed!!!
 - Performance varies with load conditions
 - Equipment performance does not assure delivered performance
 - Systems are field installed and require a field commissioning procedure
- Efficiency and performance go hand in hand

ENERGY STAR INDOOR AIR PACKAGE HVAC BEST PRACTICE INSTALLATION

BENEFITS TO YOU AND YOUR CUSTOMER

- Enhanced customer services
- Additional revenue stream
- Additional work for Off-peak

seasons

- •Identify problems that can bite you!
- Fewer callbacks
- Differentiation in the Marketplace
- Become a "Participating Contractor"

THE AC-TUNE-UP

- Includes the entire system
- Focusing on:
 - Proper airflow
 - Correct refrigerant charge
 - Delivering conditioned air
- Ultimately proper AIR CONDITIONING
 - By quantifying performance

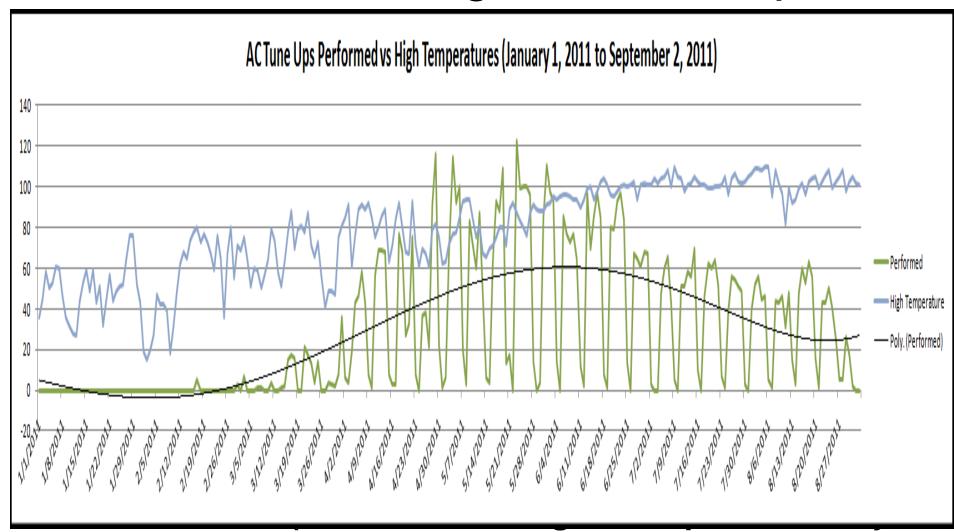
Sample of 59 Hi-Perf. tune-ups at Arkansas State University

- 50 tons of additional delivered capacity
- 28% average increase in delivered capacity from Pre- to Post
- Total increase of 21% of rated capacity
- Typical Actions taken:
 - Clean condenser
 - Clean evaporator coil and blower
 - Change filter as needed
 - Adjust refrigerant as needed

Typical Results

Average increase in Delivered Cooling:

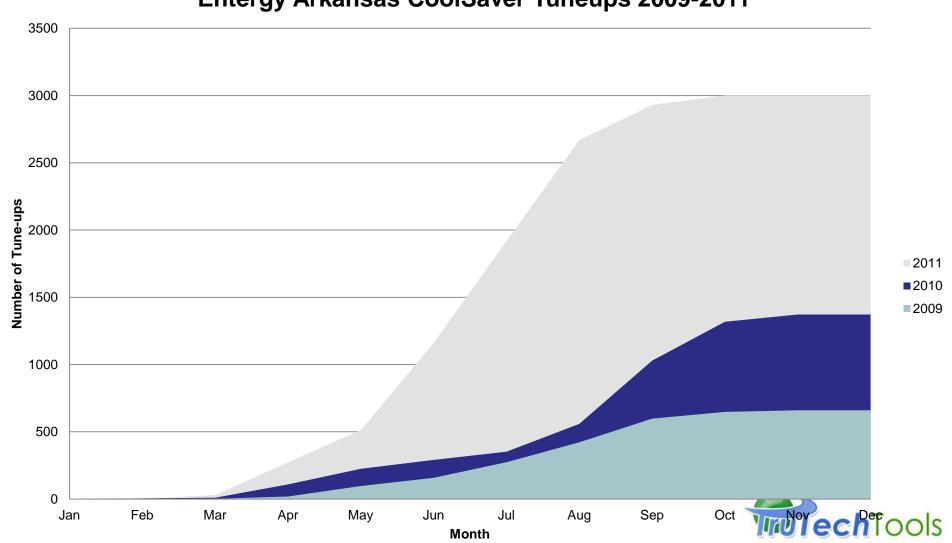
27.2%!


- Hundreds of \$ savings per system
- Often less than a 1- year payback per system
- Less trouble-calls and maintenance costs
- Fewer replaced parts
- · Less "Guessing;" Get it right the first time!

Results

- Average reduction of 0.127 kW/ton in peak demand (res. & comm.)
- (99% confidence from a 7500-TU sample)
- Average of 500 1500 kwh savings annually (A/Cs only; Heat pumps higher)

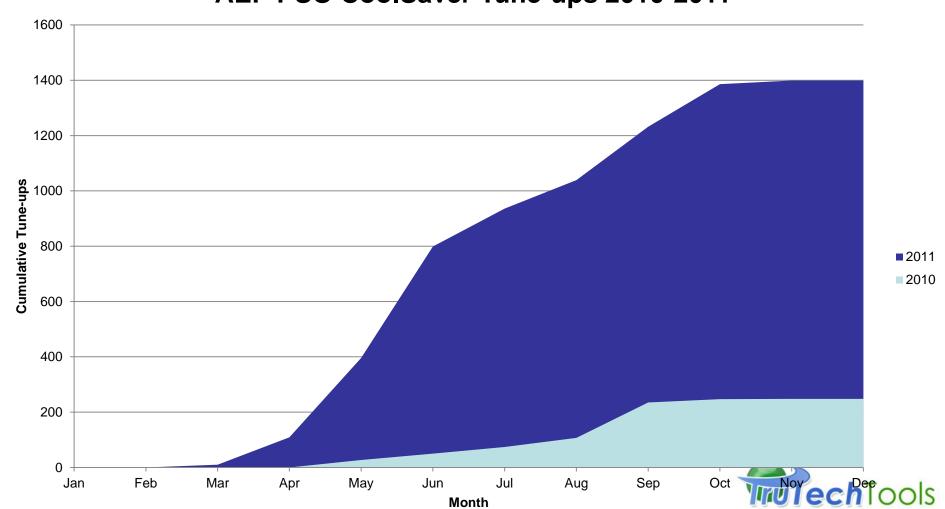
Understanding the Tune-Up



CLEAResult; 2011)

CoolSaver Program Growth - AR

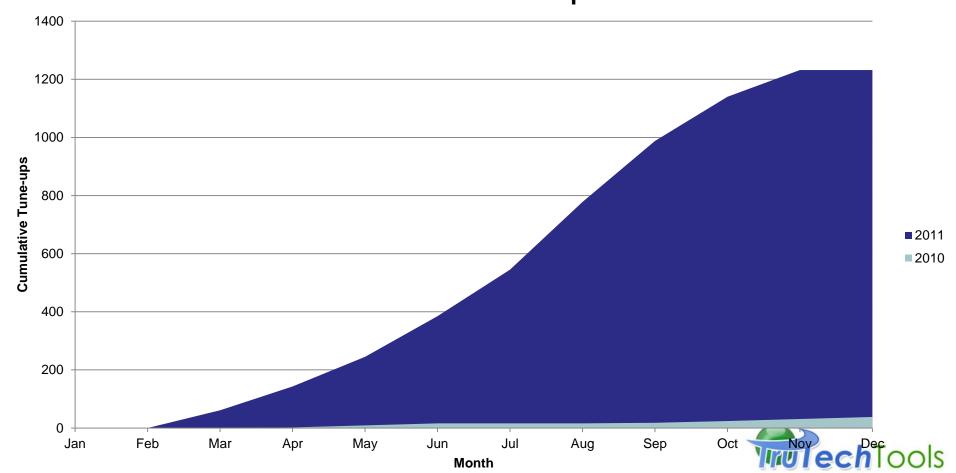
Entergy Arkansas CoolSaver Tuneups 2009-2011


Entergy Arkansas CoolSaver 2011 Results

- 3011 Tuneups
- 1112 kW Peak reduction
- 1,750,000 kWh savings
- \$426,575 incentives paid

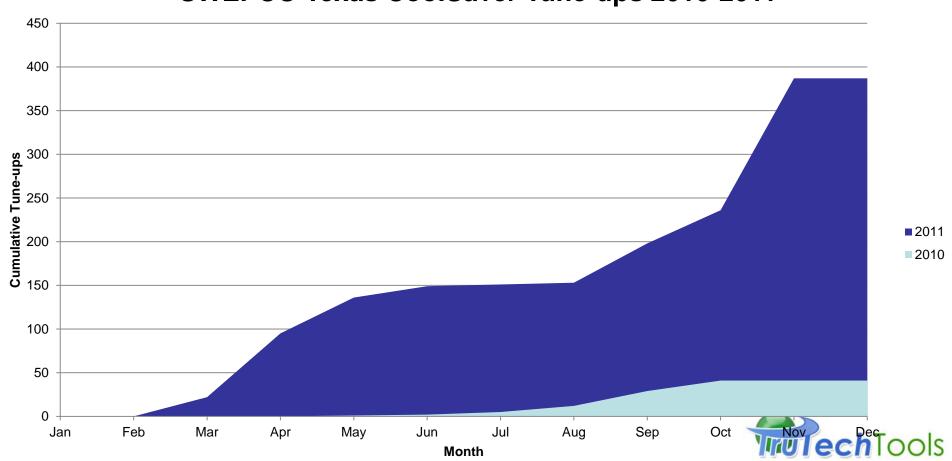
CoolSaver Program Growth - OK

AEP PSO CoolSaver Tune-ups 2010-2011


- 1417 Tuneups
- 820 kW Peak reduction
- 1,219,755 kWh savings
- \$185,825 incentives paid

CoolSaver Program Growth Texas AEP-TCC

CoolSaver AEP Texas CoolSaver Tune-ups 2010-2011


AEP-TCC CoolSaver 2011^{CoolSaver} Results

- 1247 Tuneups
- 570 kW Peak reduction
- 1,431,018 kWh savings
- \$173,175 incentives paid

CoolSaver Program Growth SWEPCO-TX

SWEPCO Texas CoolSaver Tune-ups 2010-2011

AEP-SWEPCO-TX CoolSaver 2011 Results

- 392 Tuneups
- 152 kW Peak reduction
- 305,859 kWh savings
- \$46,875 incentives paid

Total results for all 4 programs (2011)

- 6,067 Tuneups
- 2.67 MW Peak reduction
- 2,969,755 kWh savings
- \$832,450 incentives paid

Now...

How do we turn this into a new profit center in our business?

INGREDIENTS of a Successful program

- AND— it doesn't happen by itself!
- Interested customers
- Active program sponsor: Utility or state (or local) energy office (municipals, co-ops, etc.)
- Interested contractors
 - Business training
 - Mindset change
 - Technical Training
 - Proper tools

What makes the difference

- Experienced Energy Services Company (ESCO)
 - A thorough, customized process
 - The glue that holds it all together and makes the program happen
 - A responsive support structure and process

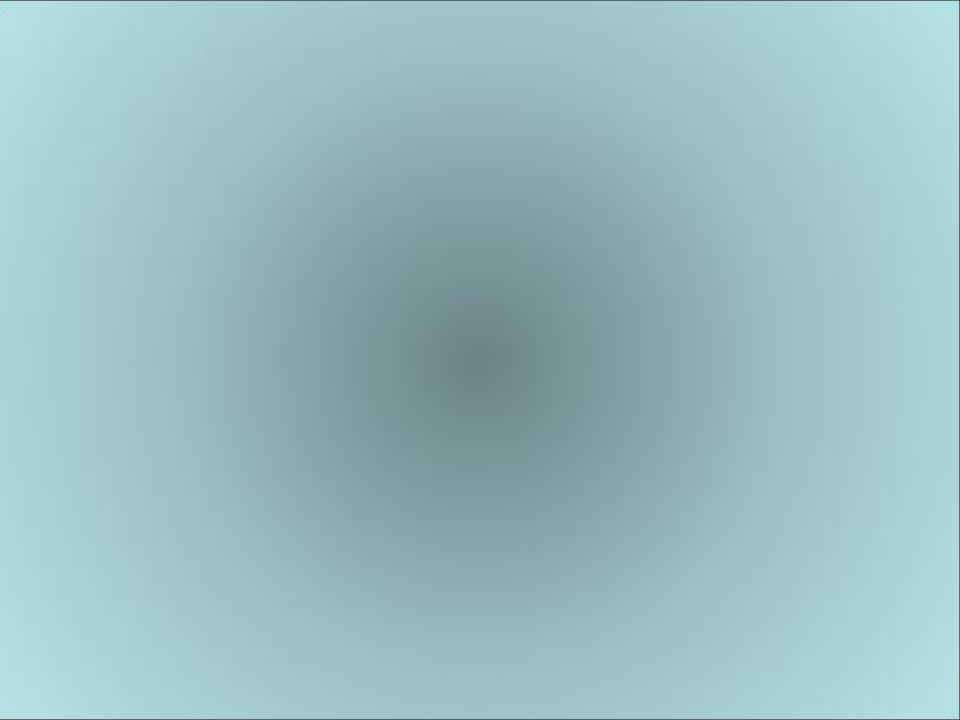
Contractor Success stories

- Higher customer satisfaction
- Better profits
- Excited technicians
- Better reputation
- More confidence from equipment manufacturers
- More confidence from technicians
- Improved reputation
- Business Impact for contractors and Utilities
- Program feedback and business model changes

CONCLUSIONS:

- So Therefore....
- Training need
- Contractors don't know what they should know
- Business model changes

Consequences


- If you don't LOOK MEASURE ID PROBLEM
 - You might as well leave the scene before you commit a crime!
- Manufacturers and distributors can avoid a black eye for poor quality that they are NOT responsible for
- What would the world be like if systems were improved, a mill million, 100 million?

Resources & Contacts

www.TruTechTools.com/Training www.TruTechTools.com/Webinars www.YouTube.com/user/jimbergmann3

> Jim2@TruTechTools.com 888-224-3437 www.TruTechTools.com

